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Muon spin relaxation in ferromagnets: theoretical results for 
paramagnetic EuO and EuS 

Stephen W Lovesey and Erik Engdahl 
DRAL Rutherford Appleton Laboratory. Oxon OX1 I OQX. UK 

Received 11 November 1994 

Abstract. The relaxation rate for depoldmion of a positive muon implanted in an isotropic 
magnetic salt with ferromagnetic exchange interactions is studied theoretically. on the basis of 
the coupled-mode theory of critical and paramagnetic spin fluctuations and a full numerical 
evaluation of the dipole held experienced by the muon. The main findings from studies of 
realistic models of EuO and EuS are (a) a significant dependence of the relaxation rate, A, on 
the assumed position of the implanted muon and (b) a monotonic temperature dependence, with 
A - t3I2 in lhe approach to the critical temperature at which the correlation length, e diverges. h 
conmsf previous results for a model of an isotropic magnet with an antiferromagnetic exchange. 
RbMnF3, show thJI A for this magnet is not a monotonic function of the temperature, and in 
the pre~ursor region to Z, A increases with decreasing temperature with a power law behaviour 
A - t'I2. Thc calculated values of 1 for EuO are consistent with data from preliminary 
experiments on the same salt. 

1. Introduction 

Several experimental studies have demonstrated that measurements of the depolarization 
of positive muons implanted in magnetic materials have the potential to provide useful 
information, at an atomic level of detail, on the fluctuations of the magnetic moments; 
see, for example, Cox (1987) and Dalmas de R6otier er al (1994). In a previous paper 
we provided a comprehensive theoretical investigation of relaxation in the paramagnetic 
phase of an antiferromagnetically coupled material (Lovesey et al 1994). The present paper 
reports findings from a similar, comprehensive investigation of muon relaxation in isotropic, 
ferromagnetically coupled systems. Results for two materials, EuO and EuS, are provided. 

The overall plan of the work is the same as that used to study the antiferromagnetically 
coupled salt, RbMnF3, namely, a complete numerical evaluation of the spatial Fourier 
transform of the dipole field between the muon moment and the atomic moments, and a 
description of critical and paramagnetic fluctuations of the atomic moments from a full 
version of the coupled-mode theory. In view of the strong similarities in the work for the 
two types of magnetic salts the background to the methods given here is very brief; the 
reader interested in these matters is referred to Lovesey er al (1994). 

Turning to the results of our work based on realistic models of EuO and EuS- 
an isotropic Heisenberg magnet with exchange interactions out to the second shell of 
neighbouring. spins-we find that the magnitude and temperature dependence of the 
relaxation rate, A, depend on the position assumed for the implanted muon. A similar 
finding was obtained in the study of RbMnF3. For the latter material, A is not a 
monotonic function of the temperature. In contrast, the relaxation rates for EuO and EuS 
are found to be monotonic functions of the temperature, cf table 1. In the approach to 
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the critical temperature 1 increases, and the temperature dependence, expressed in terms 
of the correlation length, g, is provided by g2-' where the dynamical critical exponent 
z = 5/2(3/2) for a ferromagnetically (antiferromagnetically) coupled material. 

S W Lovesey and E Engdahl 

Table 1. 
componds to a muon site 6 j ,  and 61 = 00.25(1. 1. 1) and 82 = a0.35(1, 1. I). 

Representative values of muon relaxation rates in isotropic ferromagnet% A ( j )  

EuO EuS 

TIT, A ( I )  (NI) A W A ( 1 )  A(1) (d) A W A ( 1 )  
1.3 1.51 1.42 3.14 1.53 
1.5 1.35 1.35 2.44 1.43 
2.0 1.24 1.21 1.86 I32 
4.0 1.21 1.20 1.47 1.22 
00 I .22 1.16 1.27 1.16 

An expression for A given in section 2 is based on the assumption that the contact 
interaction is negligible compared to the dipole interaction (a full theory that includes both 
the dipole and contact interactions is reviewed by Lovesey er al 1994). The behaviour of 
A in the critical region is the subject of section 3. Results for the paramagnetic region are 
provided in section 4, together with results from an investigation of the dependence of A 
on the position assumed for the implanted positive muon. Our findings are discussed in 
section 5. 

2. Muon relaxation rate 

A derivation of a formula for the relaxation rate, A, based on Fermi's golden rule for 
transition rates, is reviewed by Lovesey et a1 (1994). Here. we record the formula for a 
multidomain sample, in which domains are randomly oriented, so it is appropriate to average 
A over orientations of the muon spin axes relative to the crystal axes. If the magnetic field 
acting on the muon is B, and its thermal average (B) = O(T > Tc), then the zero-field 
relaxation rate is determined from 

(2.1) 

where B(r) is the standard Heisenberg representation of the operator B. 
In the present case, it is further assumed that the only contribution to B is provided 

by the dipole interaction between atomic moments, -gpBs, on a lanice and the muon 
moment. The dynamical properties of the atomic moments are described by a Kubo spin 
relaxation function, F ( k ,  o), where k and o are wavevector and frequency variables. One 
then finds 

= i ( g a p N ) ' S m  -m dr(B+(O) . W)) 

In this expression, ~ ( k )  is the isothermal susceptibility, and D @ ( k )  is the spatial Fourier 
transform of the dipole field. The latter depends on the lattice structure for the atomic 
moments, and the position of the implanted muon. Various properties of D @ ( k )  are 
summarized in an appendix. 

In the following section, equation (2.2) is evaluated for temperatures T -+ Tc. For higher 
temperatures (T > 1.30Tc) we have evaluated (2.2) numerically using values of F(k, 0) 
obtained from the coupled-mode theory of critical and paramagnetic spin fluctuations. 
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3. Critical values of A 

In the limit T + Tc, the isothermal susceptibility, x(k) ,  has a large peak at k = 0, where 
it is of order ( I / K ’ )  and K is the inverse correlation length ( K  = 0 at TJ. We have shown 
that the spherical average of the spatial Fourier transform of the dipole field is a slowly 
varying.function of k for k in the vicinity of the Brillouin zone centre. These observations 
lead us to the result, for T + T, 

A = 7j-(gg,&v/Lduo)z E{ ~ v ~ ~ ~ ’ ~ k ~ ~ ’ ] ~ ~ ( T l ~ ~ )  c X(k)F(k. 0). (3.1) 

Here, the curly brackets denote an average of the enclosed quantity over the directions of 
k followed by the limit k + 0. Further progress is made by using the Ornstein-Zemike 
form for the susceptibility, and the Markovian approximation for the relaxation function. 

2x 

UP k 

Inserting in (3.1) the values 

x(k )  = ( ~ / 2 j ) ( K ’ + k Z ) - ’  (3.2) 

F(k .  0) = [ ~ r ( k ) ] - ’  (3.3) 

(3.4) 

and 

where F(k)  is the decay rate estimated from coupled-mode theory, namely 

r ( k )  = (Tjvo/24rr)’/’k2(k2 + K’)/K~/’ 

A = 0.1 15(ggp&LN&/uO)’ ~ ~ ~ O ~ ~ ~ O ~ ~ ~ ( T , V ~ ) ” ’ / ~ ~ K ~ ~ ’ ~ .  (3.5) 

one arrives at 

e’ 

In these expressions, vo is the volume of a unit cell, and j = aZ(J1 + Jz) where J1 and 
Jz are the two significant exchange parameters between nearest and next-nearest magnetic 
atoms. We conclude that, for an isotropic ferromagnet, the muon relaxation rate increases on 
approaching the critical temperature from above, and it grows with decreasing temperature 
as ( I / K ) ~ - ’  where z is the dynamical critical exponent (Lovesey etal 1992, Lovesey er al 
1994). 

Various properties of the FCC magnetic salts EuO and EuS are summarized by Lovesey 
and Trohidou (1991). Employing the appropriate values in (3.5) we find, as T + T, 

(3.6) 
where a is the unit cell side. A similar expression is obtained for EuS apart from the 
numerical constant which has the value 4.06. In amving at the result (3.6) we have exploited 
the result 

A(Eu0) = { 1.34/(aK)3’Z] ps-‘ 

luoDC~(O)1’ = 6(4~/3)’  (3.7) 
up: 

which is valid if the muon occupies a site of high symmetry; see appendix A. Experimental 
data for K reviewed by Als-Neilsen (1974) are well represented by 

~ ~ = 3 . 1 1 ( ~ - - 1 ) ~ ’ ~ ~ .  (3.8) 

This representation is good for both EuO and EuS for T < 1.3Tc. Values of A derived from 
(3.6) and (3.8) are consistent with previous estimates (Lovesey et nl 1992). 

For higher temperatures, the arguments used in the above paragraphs are no longer 
sound, and full numerical evaluations of the dipole field and the spin relaxation function 
are called for. Results from such calculations are summarized in the following section. 
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4. Paramagnetic fluctuations 

In section 3 we exploited the simplification in the evaluation of (2.2) that arises in the 
critical region from the concentration of weight in the kernel at the centre of the Brillouin 
zone. Outside the narrow band of temperatures in which the corresponding result for A, 
equation (3.5). can be used with confidence it is necessary to (a) calculate the spin response 
function throughout the Brillouin zone and (6) calculate the spatial Fourier transform of the 
dipole field at the site of the implanted muon. Armed with these data, at a sufficient number 
of points in the zone, the integration over the Brillouin zone in (2.2) is readily accomplished. 
Item (b) has been discussed by Lovesey er a1 (1994). Additional information on the dipole 
fields in general and specifically for EuO and EuS is gathered in an appendix to this paper. 
Regarding item (a), the spin response function is derived from a full version of coupled- 
mode theory. Details of the theory and its application to EuO and EuS are covered by 
Cuccoli et a1 (1989). 

In view of the extensive background to the two items required to obtain reliable values 
for A from (2.2), we will here move immediately to the findings of OUT numerical studies. 
Results for A, in units of p-], are listed in table 1 for (T/T,) > 1.3. Data are provided 
for two muon sites. One is a reasonable first guess, namely, 61 = a0.25(1,1,1). The 
second site is chosen to illustrate the variation in magnitude and the temperature dependence 
with changes in 6. Before moving to a fuller account of this dependence, we note that A 
is a monotonic function of the temperature in contrast to our previous findings for an 
antiferromagnetically coupled salt. 

S W Lovesey and E Engdahl 
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Figure 1. Values of the muon relaxation me for two values of the reduced temperamre. 
(TIT,) = 1.3 and 2.0. me shown as a function of position of the muon 6 = ~ ( 1 ,  1. 1) where 
the pmmeter I extends up to 0.4. Data for (TIT.) = 1.3 (2.0) are denoted by ~ ( 0 ) .  Results 
are for our model of EuO. 
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Figure 1 displays 1 when the muon site is varied along the main diagonal of the chemical 
unit cell of EuO. The parameter x = 0.25 corresponds to our first guess of the muon location, 
whereas x = 0.50 would mean that muon site coincides with one of the oxygen ions. Near 
x = 0.25, A shows a minimum irrespective of temperature. The curves in figure 1 for the 
two temperature (T/T,) = 1.3 and 2.0 are not parallel. This is due to different width of 
the k = 0 peak of the van Hove response function 

S(k, w = 0) = (T/N) ,y (k)F(k ,  0). 
If one had performed the continuum limit approximation of the dipolar structure factor, as 
in the previous section, the curves would become parallel. 

5. Discussion 

The theoretical findings reported here for muon spin relaxation rates in ferromagnetically 
(F) coupled paramagnets complement previous work on antiferromagnetically (AF) coupled 
magnets (Lovesey er a1 1994). In the process, we have also added to our knowledge 
about the behaviour of the dipole field between the implanted muon and atomic spins, and 
investigated another method for the numerical computation of the field. 

Our analytical and numerical work shows that for F the relaxation rate, 1, decreases 
monotonically with temperature as the temperature is increased from the critical region, 
where A is proportional to E312 and 6 is the correlation length. At very high temperatures, 
the relaxation rates for our two examples which are models of the EuO and EuS, are almost 
the same size. On the other hand, in the approach to the critical region the relaxation rates 
for EuS exceed those for EuO by a factor that is of the order of 2-3 (for the same values of 
T/T,). The values of A given in table 1 for EuO are consistent with results from preliminary 
experiments (Hartmann 1994). 

Looking at our results for F and AF magnets, two findings merit some comment. First, 
for both magnets, A, depends to a significant degree on the location in the chemical unit 
cell of the implanted muon. So, a quantitative analysis of pSR sixnals demands accurate 
information on the positions of the implanted muon. Secondly, the temperature dependence 
of A, as a function of the reduced variables (T/T,), is different for F and AF systems. In the 
critical region A c( with z = 5 / 2 ~  and z = 3/2AF. At higher temperatures, 1 decreases 
monotonically for the F system, while for AF it reaches a minimum before recovering to a 
value at infinite temperature that is comparable in  size to values predicted in the precursor 
to the critical region, say (TJT,) 1.10. We have verified that differences in A(T/T,) for 
the two systems arises from differences in 

as a function of ( T / T )  for F and AF systems. A possibly interesting form of plausibility 
argument is obtained by use of a Gaussian approximation for F ( k ,  U) ,  in which case the 
previous function is proportional to 

Evaluation of this quantity. using the appropriate forms of x(Ic), as a function of  (TIT,) 
reveals features similar to those obtained in our comprehensive calculation based on coupled- 
mode theory. 

Finally, it remains to say that in the present study, we have satisfactorily undertaken the 
same tests of our numerical work as we did in the previous study of a model of RbMnF3 
(Lovesey er al 1994). 
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Appendix 

A I . .  Fourier-transform of dipolarfield 

The spatial transform of the dipolar field is given by 

where R, = I& + a = -6 + a is the vector from the @+ to the ath magnetic ion, 
R, = R J R ,  and Ra = ]&,I. (NB the definition in (AI) differs from that used by 
Lovesey et a1 (1994) by the presence of an extra trivial phase factor exp(-ik. a).) The 
vectors (a) exhaust the direct lattice with respect to a chosen lattice origin a = 0, and 
6 gives the location of the muon with respect to the same lattice origin. 01 and p label 
Cartesian components. Although the sum in (Al) is unconditionally convergent, it is rather 
slowly convergent. For numerical computation it is suitable to improve the convergence by 
employing the Ewald summation method: see, for example, Kitel (1986). The dipolar sum 
then becomes 

4rr -a -p  
D@('(rC) = p3 ~x Hmp(pR, )  exp(ik. R,,) - -k k exp(-kz/4pz) 

U WO 

- ~ ~ ' ( K " + k a ) ( K ~ + k ~ ) Q [ ' K ~ ~ ) 2 ] e x p ( - i K . I & )  7r (A2) 
P vo K 

where 

1 
H(r) and H ( r )  = -- exp(-r2) dr = -erfc(r) r 

a 
ar'arp H,B(T) = - 

Q(k)  = (I/k)exp(-k) and, finally. = k/lrCl 

The notation CL indicates that the term K = 0 is excluded in the reciprocal lattice 
summation. p is a'free parameter that is discussed below. 

An interpretation of the Ewald summation is that part of the summation is done in the 
direct lattice and part in the reciprocal lattice. The free parameter p determines the relative 
weight of these two summations. The limit p -+ 0 corresponds to the original summation 
in (Al), whereas p + 00 corresponds to a summation entirely in the reciprocal lattice. 

The formula (A2) has been implemented by a computer program for several lattice 
structures. In the program, the summations are grouped into cubical shells centred at a = 0 
and K = 0 respectively. Cubic shells are added until the contribution from the latest shell 
is found to be smaller than a chosen value. This value should be small enough to avoid 
spurious convergence since sometimes a shell-grouped series is monotonically convergent 
rather than alternating. 

In most cases, the free parameter was chosen p = 0.5 which means roughly an equal 
number of cubic shells in the summation in the direct and reciprocal lattices. 
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A2. Dipolar structure factor 

The dipolar structure factor occurring in (2.2) is 

For a general /*+ location, 6, of no particular symmetry, the function G ( k )  shows no 
symmetry with respect to k except for the trivial C ( k )  = G(-k ) .  Therefore, one generally 
has to compute G(k)  for a sufficiently fine mesh in the entire first Brillouin zone (BZ). It is 
not necessruy that this mesh follows the structure of the reciprocal lattice. We have chosen 
a mesh consisting of N points in a simple cubic type mesh in the first BZ. Sometimes, the 
concomitant factor x ( k ) F ( k .  0) in (2.2) displays a symmetry such that it can be reduced 
to an irreducible polyhedra in the first BZ. In particular, this happens in the absence of 
anisotropic interactions in the Hamiltonian and use of spherical model susceptibility. Then 
the summation can be grouped according to 

where G'(k) = 
particular wave vector k in the irreducible polyhedra of x ( k ) F ( k ,  0). 

agree with those obtained previously by Lovesey et a1 1994. 

A3. Continuum limit and spherical average of dipolar structure factor 

For T in the precursor region T + T:, the van Hove response function S(k, o = 0) = 
( T / N ) x ( k ) F ( k ,  0) becomes strongly peaked about IC = 0. It is therefore interesting to 
study D"(k) around k = 0. This is most conveniently done by (A2) in the p 4 00 limit. 
We find 

G(k)  and Z(k) is the full set of wavevectors that reduces to the 

It has been verified that the results of the present program for the dipolar structure factor 

(As) 

where 

Since the K = O'term is extracted from the left hand side, C @ ( k )  is analytic at k = 0. One 
finds the symmetry rules Dup(k) = DB"(k) and D"B(-k) = (D"fl(k))*. This corresponds 
to Cap@) = Csa(k) and Cap = (4) = (Caa(k))x. There is also the summation rule 
E, Dun@) = 0, corresponding to E, C""(k) = 1. Since, ReC@(k) is even in k and 
ImC@(k) is odd, C@(k)  expanded up to second order in k can be written 

where cup, d;# and e$ -are real. The sum rule becomes E, cuu = 1, E, d,"" = 0 and 
1, e;: = 0. 
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The continuum limit C@(k + 0) was computed by first using (AZ) with kl = 
(Zx/a)(O, O,l)lO-’ and kz = (Zx/a)(O. 0, Z)10-3. Use of (A7) then gives the estimate 

In the continuum limit we find 

4rr 
vo 

Dup(k + 0) = --(k k - cup) 

which is non-analytic at k = 0 having constant values along any straight ray towards k = 0. 
The corresponding structure factor is 

Since for the present examples the response function is isotropically peaked at k = 0, this 
structure factor could be substituted for its isotropic spherical average. Using 

gives 

The curly brackets denote a spherical average over the directions of k followed by the limit 
k + 0. 

In particular, for a symmetric muon position such as 6 = ;.(I, 1, l), we recover the 
Holstein-Primakoff result cup = f8.p. This gives for the structure factor the value $($)’. 
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